داده کاوی، پایگاهها و مجموعههای حجیم دادهها را در پی کشف واستخراج دانش، مورد تحلیل و کند و کاوهای ماشینی (و نیمهماشینی) قرار میدهد. این گونه مطالعات و کاوشها را به واقع میتوان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینهها و کاربردها، و نیز ابعاد و اندازههای دادههای امروزین است که شیوههای ماشینی مربوط به یادگیری، مدلسازی، و آموزش را طلب مینماید.
بسیاری از شرکتها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیکهای دادهکاوی به طور تاریخی به گونهای گسترش یافتهاند که به سادگی میتوان آنها را بر ابزارهای نرمافزاری و ... امروزی تطبیق داده و از اطلاعات جمعآوری شده بهترین بهره را برد. در صورتی که سیستمهای Data Mining بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانکهای اطلاعاتی بزرگ فراهم باشد، میتوان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.